Aurora Mastodont Project – Matrix Analyses Project Next Generation Science Standards

The suggested Next Generation Science Standards (NGSS) that the Aurora Mastodont Project – Matrix Analyses Project can fulfill are listed below. This is a complete list that would require class time in addition to the lab provided, perhaps involving several more lessons and activities. Some of these lessons are provided in the teachers guide available at

http://www.waubonsee.edu/faculty/dvoorhees/MastodontMatrix/index.html. <u>The standards that are</u> <u>underlined are those that do not need additional class time</u>, other than the completion of the lab that is provided on the website above.

These standards have been obtained from the June 2013, Update 0 of the NGSS.

Middle School

<u>LS2.A</u>, <u>LS2.C</u>, <u>LS4.A</u>, LS4.B, LS4.C MS-LS1-5, <u>MS-LS2-2</u>, MS-LS2-3, <u>MS-LS2-4</u>, MS-LS2-5, <u>MS-LS4-1</u>, <u>MS-LS4-2</u> <u>ESS1.C</u>, <u>ESS2.A</u>, <u>ESS2.C</u> <u>MS-ESS1-4</u>, MS-ESS2-1, <u>MS-ESS2-2</u>, MS-ESS2-4, MS-ESS3-1

High School

LS1.A, LS2.A, <u>LS2.C</u>, <u>LS3.B</u>, <u>LS4.C</u> HS-LS1-2, <u>HS-LS2-1</u>, <u>HS-LS2-2</u>, <u>HS-LS2-6</u>, HS-LS4-3, <u>HS-LS4-4</u>, <u>HS-LS4-5</u> ESS1.B, <u>ESS2.A</u>, <u>ESS2.E</u> <u>HS-ESS2-1</u>, <u>HSESS2-2</u>, HS-ESS2-4, <u>HS-ESS2-5</u>, <u>HS-ESS2-7</u>

Middle School - details

Life Sciences

Disciplinary Core Ideas

LS2.A: Interdependent Relationships in Ecosystems

^[2] Organisms, and populations of organisms, are dependent on their environmental interactions both with other living things and with nonliving factors. (MS-LS2-1)

In any ecosystem, organisms and populations with similar requirements for food, water, oxygen, or other resources may compete with each other for limited resources, access to which consequently constrains their growth and reproduction. (MS-LS2- 1)

^[2] Growth of organisms and population increases are limited by access to resources. (MS-LS2-1)

Similarly, predatory interactions may reduce the number of organisms or eliminate whole populations of organisms. Mutually beneficial interactions, in contrast, may become so interdependent that each organism requires the other for survival. Although the species involved in these competitive, predatory, and mutually beneficial interactions vary across ecosystems, the patterns of interactions of organisms with their environments, both living and nonliving, are shared. (MS-LS2-2)

LS2.C: Ecosystem Dynamics, Functioning, and Resilience

Ecosystems are dynamic in nature; their characteristics can vary over time. Disruptions to any physical or biological component of an ecosystem can lead to shifts in all its populations. (MS-LS2-4)

Biodiversity describes the variety of species found in Earth's terrestrial and oceanic ecosystems.
 The completeness or integrity of an ecosystem's biodiversity is often used as a measure of its health. (MS-LS2-5)

LS4.A: Evidence of Common Ancestry and Diversity

The collection of fossils and their placement in chronological order (e.g., through the location of the sedimentary layers in which they are found or through radioactive dating) is known as the fossil record. It documents the existence, diversity, extinction, and change of many life forms throughout the history of life on Earth. (MS-LS4-1)

² Anatomical similarities and differences between various organisms living today and between them and organisms in the fossil record, enable the reconstruction of evolutionary history and the inference of lines of evolutionary descent. (MS-LS4-2)

² Comparison of the embryological development of different species also reveals similarities that show relationships not evident in the fully-formed anatomy. (MS-LS4-3)

LS4.B: Natural Selection

I Natural selection leads to the predominance of certain traits in a population, and the suppression of others. (MS-LS4-4)

LS4.C: Adaptation

Adaptation by natural selection acting over generations is one important process by which species change over time in response to changes in environmental conditions. Traits that support successful survival and reproduction in the new environment become more common; those that do not become less common. Thus, the distribution of traits in a population changes. (MS-LS4-6)

MS-LS2-3. Develop a model to describe the cycling of matter and flow of energy among living and nonliving parts of an ecosystem. [Clarification Statement: Emphasis is on describing the conservation of matter and flow of energy into and out of various ecosystems, and on defining the boundaries of the system.] [Assessment Boundary: Assessment does not include the use of chemical reactions to describe the processes.]

OBJ

- MS-LS2-4. Construct an argument supported by empirical evidence that changes to physical or biological components of an ecosystem affect populations. [Clarification Statement: Emphasis is on recognizing patterns in data and making warranted inferences about changes in populations, and on evaluating empirical evidence supporting arguments about changes to ecosystems.]
- MS-LS2-2. Construct an explanation that predicts patterns of interactions among organisms across multiple ecosystems. [Clarification Statement: Emphasis is on predicting consistent patterns of interactions in different ecosystems in terms of the relationships among and between organisms and abiotic components of ecosystems. Examples of types of interactions could include competitive, predatory, and mutually beneficial.]

OBJ

- MS-LS2-5. Evaluate competing design solutions for maintaining biodiversity and ecosystem services. * [Clarification Statement: Examples of ecosystem services could include water purification, nutrient recycling, and prevention of soil erosion. Examples of design solution constraints could include scientific, economic, and social considerations.]
- MS-LS1-5. Construct a scientific explanation based on evidence for how environmental and genetic factors influence the growth of organisms. [Clarification Statement: Examples of local environmental conditions could include availability of food, light, space, and water. Examples of genetic factors could include large breed cattle and species of grass affecting growth of organisms. Examples of evidence could include drought decreasing plant growth, fertilizer increasing plant growth, different varieties of plant seeds growing at different rates in different conditions, and fish growing larger in large ponds than they do in small ponds.] [Assessment Boundary: Assessment does not include genetic mechanisms, gene regulation, or biochemical processes.]

OBJ OBJ

MS-LS4-1. Analyze and interpret data for patterns in the fossil record that document the existence, diversity, extinction, and change of life forms throughout the history of life on Earth under the assumption that natural laws operate today as in the past. [Clarification Statement: Emphasis is on finding patterns of changes in the level of complexity of anatomical structures in organisms and the chronological order of fossil appearance in the rock layers.] [Assessment Boundary: Assessment does not include the names of individual species or geological eras in the fossil record.]

OBJ

MS-LS4-2. Apply scientific ideas to construct an explanation for the anatomical similarities and differences among modern organisms and between modern and fossil organisms to infer evolutionary relationships. [Clarification Statement: Emphasis is on explanations of the evolutionary relationships among organisms in terms of similarity or differences of the gross appearance of anatomical structures.]

Earth and Space Science

Disciplinary Core Ideas

ESS1.C: The History of Planet Earth

The geologic time scale interpreted from rock strata provides a way to organize Earth's history.
 Analyses of rock strata and the fossil record provide only relative dates, not an absolute scale.
 (MS-ESS1- 4)

ESS2.A: Earth's Materials and Systems

^[2] The planet's systems interact over scales that range from microscopic to global in size, and they operate over fractions of a second to billions of years. These interactions have shaped Earth's history and will determine its future. (MS-ESS2-2)

OBJ OBJ OBJ OBJ OBJ OBJ OBJ OBJ

All Earth processes are the result of energy flowing and matter cycling within and among the planet's systems. This energy is derived from the sun and Earth's hot interior. The energy that flows and matter that cycles produce chemical and physical changes in Earth's materials and living organisms. (MS-ESS2-1)

ESS2.C: The Roles of Water in Earth's Surface Processes

Water's movements—both on the land and underground—cause weathering and erosion, which change the land's surface features and create, underground formations. (MS-ESS2-2)
Water continually cycles among land, ocean, and atmosphere via transpiration, evaporation, condensation and crystallization, and precipitation, as well as downhill flows on land. (MS-ESS2-4)
Global movements of water and its changes in form are propelled by sunlight and gravity. (MS-ESS2-4)

MS-ESS1-4. Construct a scientific explanation based on evidence from rock strata for how the geologic time scale is used to organize Earth's 4.6-billion-year-old history. [Clarification Statement: Emphasis is on how analyses of rock formations and the fossils they contain are used to establish relative ages of major events in Earth's history. Examples of Earth's major events could range from being very recent (such as the last Ice Age or the earliest fossils of homo sapiens) to very old (such as the formation of Earth or the earliest evidence of life). Examples can include the formation of mountain chains and ocean basins, the evolution or extinction of particular living organisms, or significant volcanic eruptions.] [Assessment Boundary: Assessment does not include recalling the names of specific periods or epochs and events within them.]

OBJ OBJ OBJ OBJ

- MS-ESS2-2. Construct an explanation based on evidence for how geoscience processes have changed Earth's surface at varying time and spatial scales. [Clarification Statement: Emphasis is on how processes change Earth's surface at time and spatial scales that can be large (such as slow plate motions or the uplift of large mountain ranges) or small (such as rapid landslides or microscopic geochemical reactions), and how many geoscience processes (such as earthquakes, volcanoes, and meteor impacts) usually behave gradually but are punctuated by catastrophic events. Examples of geoscience processes include surface weathering and deposition by the movements of water, ice, and wind. Emphasis is on geoscience processes that shape local geographic features, where appropriate.]
- MS-ESS2-1. Develop a model to describe the cycling of Earth's materials and the flow of energy that drives this process. [Clarification Statement: Emphasis is on the processes of melting, crystallization, weathering, deformation, and sedimentation, which act together to form minerals and rocks through the cycling of Earth's materials.] [Assessment Boundary: Assessment does not include the identification and naming of minerals.]

OBJ OBJ

MS-ESS2-4. Develop a model to describe the cycling of water through Earth's systems driven by energy from the sun and the force of gravity. [Clarification Statement: Emphasis is on the ways water changes its state as it moves through the multiple pathways of the hydrologic cycle. Examples of models can be conceptual or physical.] [Assessment Boundary: A quantitative understanding of the latent heats of vaporization and fusion is not assessed.]

OBJOBJ

MS-ESS3-1. Construct a scientific explanation based on evidence for how the uneven distributions of Earth's mineral, energy, and groundwater resources are the result of past and current geoscience processes. [Clarification Statement: Emphasis is on how these resources are limited and typically non-renewable, and how their distributions are significantly changing as a result of removal by humans. Examples of uneven distributions of resources as a result of past processes include but are not limited to petroleum (locations of the burial of organic marine sediments and subsequent geologic traps), metal ores (locations of past volcanic and hydrothermal activity associated with subduction zones), and soil (locations of active weathering and/or deposition of rock).]

OBJ OBJ OBJ

OBJ

High School - details

Life Sciences

Disciplinary Core Ideas

LS1.A: Structure and Function

^{II} Multicellular organisms have a hierarchical structural organization, in which any one system is made up of numerous parts and is itself a component of the next level. (HS-LS1-2)

LS2.A: Interdependent Relationships in Ecosystems

Ecosystems have carrying capacities, which are limits to the numbers of organisms and populations they can support. These limits result from such factors as the availability of living and nonliving resources and from such challenges such as predation, competition, and disease. Organisms would have the capacity to produce populations of great size were it not for the fact that environments and resources are finite. This fundamental tension affects the abundance (number of individuals) of species in any given ecosystem. (HS-LS2-1), (HS-LS2-2)

LS2.C: Ecosystem Dynamics, Functioning, and Resilience

A complex set of interactions within an ecosystem can keep its numbers and types of organisms relatively constant over long periods of time under stable conditions. If a modest biological or physical disturbance to an ecosystem occurs, it may return to its more or less original status (i.e., the ecosystem is resilient), as opposed to becoming a very different ecosystem. Extreme fluctuations in conditions or the size of any population, however, can challenge the functioning of ecosystems in terms of resources and habitat availability. (HS-LS2-2), (HS-LS2-6)

LS3.B: Variation of Traits

^[2] Environmental factors also affect expression of traits, and hence affect the probability of occurrences of traits in a population. Thus the variation and distribution of traits observed depends on both genetic and environmental factors. (HS-LS3-2), (HS-LS3-3)

LS4.C: Adaptation

Changes in the physical environment, whether naturally occurring or human induced, have thus contributed to the expansion of some species, the emergence of new distinct species as populations diverge under different conditions, and the decline–and sometimes the extinction–of some species. (HS-LS4-6)

Instruction leads to adaptation, that is, to a population dominated by organisms that are anatomically, behaviorally, and physiologically well suited to survive and reproduce in a specific environment. That is, the differential survival and reproduction of organisms in a population that have an advantageous heritable trait leads to an increase in the proportion of individuals in future generations that have the trait and to a decrease in the proportion of individuals that do not. (HS-LS4-3), (HS-LS4-4)

Adaptation also means that the distribution of traits in a population can change when conditions change. (H S -LS 4-3)

- HS-LS1-2. Develop and use a model to illustrate the hierarchical organization of interacting systems that provide specific functions within multicellular organisms. [Clarification Statement: Emphasis is on functions at the organism system level such as nutrient uptake, water delivery, and organism movement in response to neural stimuli. An example of an interacting system could be an artery depending on the proper function of elastic tissue and smooth muscle to regulate and deliver the proper amount of blood within the circulatory system.] [Assessment Boundary: Assessment does not include interactions and functions at the molecular or chemical reaction level.]
- HS-LS2-1. Use mathematical and/or computational representations to support explanations of factors that affect carrying capacity of ecosystems at different scales. [Clarification Statement: Emphasis is on quantitative analysis and comparison of the relationships among interdependent factors including boundaries, resources, climate and competition. Examples of mathematical comparisons could include graphs, charts, histograms, and population changes gathered from simulations or historical data sets.] [Assessment Boundary: Assessment does not include deriving mathematical equations to make comparisons.]

OBJ OBJ

HS-LS2-2. Use mathematical representations to support and revise explanations based on evidence about factors affecting biodiversity and populations in ecosystems of different scales. [Clarification Statement: Examples of mathematical representations include finding the average, determining trends, and using graphical comparisons of multiple sets of data.] [Assessment Boundary: Assessment is limited to provided data.]

OBJ

HS-LS2-6. Evaluate the claims, evidence, and reasoning that the complex interactions in ecosystems maintain relatively consistent numbers and types of organisms in stable conditions, but changing

conditions may result in a new ecosystem. [Clarification Statement: Examples of changes in ecosystem conditions could include modest biological or physical changes, such as moderate

- OBJ
- HS-LS4-3. Apply concepts of statistics and probability to support explanations that organisms with an advantageous heritable trait tend to increase in proportion to organisms lacking this trait. [Clarification Statement: Emphasis is on analyzing shifts in numerical distribution of traits and using these shifts as evidence to support explanations.] [Assessment Boundary: Assessment is limited to basic statistical and graphical analysis. Assessment does not include allele frequency calculations.]

OBJ

HS-LS4-4. Construct an explanation based on evidence for how natural selection leads to adaptation of populations. [Clarification Statement Emphasis is on using data to provide evidence for how specific biotic and abiotic differences in ecosystems (such as ranges of seasonal temperature, long-term climate change, acidity, light, geographic barriers, or evolution of other organisms) contribute to a change in gene frequency over time, leading to adaptation of populations.]

OB1 OB1

HS-LS4-5. Evaluate the evidence supporting claims that changes in environmental conditions may result in: (1) increases in the number of individuals of some species, (2) the emergence of new species over time, and (3) the extinction of other species. [Clarification Statement: Emphasis is on determining cause and effect relationships for how changes to the environment such as deforestation, fishing, application of fertilizers, drought, flood, and the rate of change of the environment affect distribution or disappearance of traits in species.]

Earth and Space Science

Disciplinary Core Ideas

ESS2.A: Earth Materials and Systems

Earth's systems being dynamic and interacting, cause feedback effects that can increase or decrease the original changes. A deep know ledge of how feedbacks work within and among Earth's systems is still lacking, thus limiting scientists' ability to predict some changes and their impacts. (HS-ESS2-1)(Note: This Disciplinary Core Idea is also addressed by HS-ESS2-2.)
The geological record shows that changes to global and regional climate can be caused by interactions among changes in the sun's energy output or Earth's orbit, tectonic events, ocean circulation, volcanic activity, glaciers, vegetation, and human activities. These changes can occur on a variety of time scales from sudden (e.g., volcanic ash clouds) to intermediate (ice ages) to very long-term tectonic cycles. (HS-ESS2-4)

ESS1.B: Earth and the Solar System

Cyclical changes in the shape of Earth's orbit around the sun, together with changes in the tilt of the planet's axis of rotation, both occurring over hundreds of thousands of years, have altered the intensity and distribution of sunlight falling on the earth. These phenomena cause a cycle of ice ages and other gradual climate changes. (secondary to HS-ESS2-4)

ESS2.E: Biogeology

^[2] The many dynamic and delicate feedbacks between the biosphere and other Earth systems cause a continual co ^[30] evolution of Earth's surface and the life that exists on it. (HS-ESS2-7)

HS-ESS2-1. Develop a model to illustrate how Earth's internal and surface processes operate at different spatial and temporal scales to form continental and ocean-floor features. [Clarification Statement: Emphasis is on how the appearance of land features (such as mountains, v alley s, and plateaus)

and sea-floor features (such as trenches, ridges, and seamounts) are a result of both constructive forces (such as volcanism, tectonic uplift, and orogeny) and destructive mechanisms (such as weathering, mass wasting, and coastal erosion).] [Assessment Boundary: Assessment does not include memorization of the details of the formation of specific geographic features of Earth's surface.]

- HS-ESS2-2. Analyze geoscience data to make the claim that one change to Earth's surface can create feedbacks that cause changes to other Earth systems. [Clarification Statement: Examples should include climate feedbacks, such as how an increase in greenhouse gases causes a rise in global temperatures that melts glacial ice, which reduces the amount of sunlight reflected from Earth's surface, increasing surface temperatures and further reducing the amount of ice. Examples could also be taken from other system interactions, such as how the loss of ground vegetation causes an increase in water runoff and soil erosion; how dammed rivers increase groundwater recharge, decrease sediment transport, and increase coastal erosion; or how the loss of wetlands causes a decrease in local humidity that further reduces the wetland extent.]
- HS-ESS2-5. Plan and conduct an investigation of the properties of water and its effects on Earth materials and surface processes. [Clarification Statement: Emphasis is on mechanical and chemical investigations with water and a variety of solid materials to provide the evidence for connections between the hydrologic cycle and system interactions commonly known as the rock cycle. Examples of mechanical investigations include stream transportation and deposition using a stream table, erosion using variations in soil moisture content, or frost wedging by the expansion of water as it freezes. Examples of chemical investigations include chemical weathering and recrystallization (by testing the solubility of different materials) or melt generation (by examining how water lowers the melting temperature of most solids).]
- HS-ESS2-7. Construct an argument based on evidence about the simultaneous coevolution of Earth's systems and life on Earth. [Clarification Statement: Emphasis is on the dynamic causes, effects, and feedbacks between the biosphere and Earth's other systems, whereby geoscience factors control the evolution of life, which in turn continuously alters Earth's surface. Examples of include how photosynthetic life altered the atmosphere through the production of oxygen, which in turn increased weathering rates and allowed for the evolution of animal life; how microbial life on land increased the formation of soil, which in turn allowed for the evolution of land plants; or how the evolution of corals created reefs that altered patterns of erosion and deposition along coastlines and provided habitats for the evolution of new life forms.] [Assessment Boundary: Assessment does not include a comprehensive understanding of the mechanisms of how the biosphere interacts with all of Earth's other systems.]
- HS-ESS2-4. Use a model to describe how variations in the flow of energy into and out of Earth's systems result in changes in climate. [Clarification Statement: Examples of the causes of climate change differ by timescale, over 1-10 years: large volcanic eruption, ocean circulation; 10-100s of years: changes in human activity, ocean circulation, solar output; 10-100s of thousands of years: changes to Earth's orbit and the orientation of its axis; and 10-100s of millions of years: long-term changes in atmospheric composition.] [Assessment Boundary: Assessment of the results of changes in climate is limited to changes in surface temperatures, precipitation patterns, glacial ice volumes, sea levels, and biosphere distribution.]

OBJ OBJ